Hurewicz fibrations in elementary toposes

Revised version

BY KRZYSZTOF WORYTKIEWICZ Université de Savoie Mont-Blanc

Realizability Boreal Summer School, Piriapolis, July 19, 2016

Intro

Question. What is a model of HoTT? What is a model of HoTT with univalence?

Remark. We won't address univalence in this talk...

Туроі

Definition. Let \mathbb{C} be a category with finite limits.

- 1. A class of maps $\mathcal{F} \subseteq \mathbb{C}_1$ is a class of fibrations provided it contains all isos and is stable under composition as well as under base change.
- 2. Let $\mathcal{F} \subseteq \mathbb{C}_1$ be a class of fibrations. An object $X \in \mathbb{C}$ is \mathcal{F} -fibrant if $!_X : X \to 1$ is a fibration.
- *3.* Let $\mathcal{F} \subseteq \mathbb{C}_1$ be a class of fibrations. $(\mathbb{C}, \mathcal{F})$ is a tribe provided every object $X \in \mathbb{C}$ is \mathcal{F} -fibrant.

Definition. Let \mathbb{C} be a category with pullbacks, $f: A \to B$ be a map and $(E, p) \in \mathbb{C} / A$. An object $\prod_f (E, p) = (\prod_f (E), \prod_f (p)) \in \mathbb{C} / B$ equipped with a morphism $\epsilon: \prod_f (E) \times_B A \to E$ is the product of E along f if the morphism

$$\epsilon_! f^*(-): \mathbb{C}/B\left((X, u), \prod_f (E, p)\right) \to \mathbb{C}/B(f^*(X, u), (E, p))$$

is iso for every $(X, u) \in \mathbb{C} / B$. The map ϵ is called evaluation.

Definition. A tribe $(\mathbb{C}, \mathcal{F})$ is \square - closed provided

i. every fibration $p: E \to A$ has a product along every fibration $f: A \to B$;

ii. and $\prod_{f} (E, p)$ is again a fibration.

Example.

- 1. Any LCCC with all the maps.
- 2. Any CCC with projections.
- 3. Small groupoids with Grothendieck fibrations (Hoffmann-Streicher) .
- 4. Kan complexes with Kan fibrations (Streicher, Voevodsky) .
- 5. Type theory terms with display maps (Gambino-Garner)

Definition. Let $(\mathbb{C}, \mathcal{F})$ be a tribe.

1. A morphism in \mathbb{C} is anodyne provided $c \in {}^{\pitchfork}\mathcal{F}$.

2. Let $\mathcal{A} \subseteq \mathbb{C}_1$ be the class of anodyne morphisms. The tribe $(\mathbb{C}, \mathcal{F})$ is homotopical provided

i. $(\mathcal{A}, \mathcal{F})$ is a factorisation system;

ii. anodyne morphisms are stable under base change along a fibration.

Remark. (Joyal) We have $(i) \Rightarrow (ii)$ provided the tribe is \square - closed.

Definition. Let $(\mathbb{C}, \mathcal{F})$ be a homotopical tribe and $A \in \mathbb{C}$. A path object $\mathbf{P}A$ is given by an $(\mathcal{A}, \mathcal{F})$ -factorisation of the diagonal $\Delta: A \to A \times A$. A homotopy with respect to a path object is called path homotopy.

Remark. Let $(\mathbb{C}, \mathcal{F})$ be a homotopical tribe. A path objects exists and can be "lifted" to slices.

Theorem. (Joyal) Let $(\mathbb{C}, \mathcal{F})$ be a homotopical tribe. The path homotopy relation is a congruence on \mathbb{C} .

Definition. A tribe $(\mathbb{C}, \mathcal{F})$ is a typos provided

i. it is homotopical and \square *- closed;*

ii. the product functor \prod_{f} preserves the path homotopy relation for every fibration f.

Theorem. (Hoffman-Streicher) The tribe of small groupoids and Grothendieck fibrations is a typos.

Theorem. (Awodey-Warren-Voevodsky) The tribe of Kan complexes and Kan fibrations is a typos.

Theorem. (Gambino-Garner) The tribe of type theory terms and display maps is a typos.

Question. How about realisability toposes?

Remark. What follows is a vast generalisation of the material in Jaap van Oosten's seminal paper *Notion of Homotopy for the Effective Topos* (2010).

Intervals

Fix an elementary topos \mathbb{T} .

Definition.

- 1. $X \in \mathbb{T}$ is connected if $\mathbb{T}(X, 1+1) = { \operatorname{inl} \circ !_X, \operatorname{inr} \circ !_X }$.
- 2. $I \in \mathbb{T}$ is an elementary interval if it is connected and has precisely two distinct global elements $\partial_0, \partial_1: 1 \rightarrow I$.

3.
$$I_n \stackrel{\text{def.}}{=} \underbrace{I + \partial_0, \partial_1 \cdots + \partial_0, \partial_1}_{n \times} I.$$

Remark.

1. $I_0 = 1$ and $I_1 = I$.

- 2. I_n has precisely n + 1 global elements $\#i_n: 1 \rightarrow I_n$ corresponding the the injections into the defining wide pushout.
- 3. There is the obvious linear order on $\mathbb{T}(1, I_n) = \{\#0, \dots, \#n\}.$
- 4. I_n is connected for all $n \in \mathbb{N}$.

Definition. A Hurewicz topos is an elementary topos with NNO, equipped with a distinguished elementary interval.

Remark. In a Hurewicz topos \mathbb{T} coproducts $\coprod_{n \in \mathbb{N}} X^{I_n}$ exist for all $X \in \mathbb{T}$ since general bounded (co)limits exist in any topos.

Example. Any Grothendieck topos.

Example. The *effective topos* Eff where the distinguished elementary interval is the assembly

$$I = (\{0, 1\}; E(0) = \{0, 1\}, E(1) = \{1, 2\})$$

since there is no uniform realizer for the map

$$\begin{array}{cccc} e:I & \longrightarrow & 1+1 \\ i & \mapsto & i \end{array}$$

where $i \in \{0, 1\}$. Notice that in (Eff, I) an object (X, \approx) is connected provided $E(x) \cap E(x') \neq \emptyset$ for all $x, x' \in X$.

Example. Any realizability topos over a PCA.

Question. Any realisability topos?

Remark. As pointed out by several people in the audience, classical toposes (e.g. realizability toposes over *Krivine structures*) cannot be Hurewicz since internal Excluded Middle stands in the way...

Paths in Hurewicz toposes

Assume \mathbb{T} is Hurewicz.

Definition.

1.
$$s_n \stackrel{\text{def.}}{=} \#0: 1 \to I_n \text{ and } t_n \stackrel{\text{def.}}{=} \#n \to I_n \text{ are called } I_n \text{ 's endpoints.}$$

2. A map $f: I_m \rightarrow I_n$ is

- endpoint-preserving if $f \circ s_m = s_n$ and $f \circ t_m = t_n$;
- order-preserving if $\#i_m \leq \#j_m \Rightarrow f \circ \#i_m \leq f \circ \#j_m$.
- 3. A order and endpoint preserving map is called degeneracy.

Remark. Suppose $k: I_m \to I_n$ is a degeneracy. Then k is epi and $m \ge n$.

Definition. Let $X \in \mathbb{T}$. The path object $X^{\langle I \rangle}$ of X is given by

$$X^{\langle I \rangle} \stackrel{\text{def.}}{=} \prod_{n \in \mathbb{N}} X^{I_n} / \sim$$

where $\sigma \sim \theta$ if there is a degeneracy δ such that $\sigma = \theta \circ \delta$ or $\theta = \sigma \circ \delta$.

Remark.

1. Any path $[\sigma] \in X^{\langle I \rangle}$ has a canonical representative of minimal length.

2. For any two paths $[\sigma], [\theta] \in X^{\langle I \rangle}$ there are always representatives of same length.

3. Let $\rho: I_m \to X$ and $\rho': I_n \to X$ be representatives of a path $[\sigma] \in X^{\langle I \rangle}$. Then

$$\rho \circ \# m = \rho' \circ \# n$$

(since ρ and ρ' are related by a degeneracy).

4. In a Hurewicz topos, *path-connectedness* and *connectedness* are equivalent notions.

Definition. A constant path is a path with the path of length 0 among it's representatives.

Notation. We shall write $[\sigma_m]$ if there is a need to insist that the representative's domain is I_m .

Remark. The source and target maps $s, t: X^{\langle I \rangle} \to X$ given by evaluations $s([\sigma_m]) = \sigma_m(0)$ and $t([\sigma_m]) = \sigma_m(m)$ respectively determine an internal graph $X^{\langle I \rangle} \rightrightarrows X$ in \mathbb{T} , since representatives differ by a degeneracy. **Notation.** We shall abuse notation and write $X^{\langle I \rangle}$ for the internal graph $X^{\langle I \rangle} \rightrightarrows X$.

Proposition. The internal graph $X^{\langle I \rangle}$ is an internal category with

i. identity $c: X \to X^{\langle I \rangle}$ *given by* $c(x) = \left[1 \xrightarrow{\lceil x \rceil} X \right]$;

ii. composition $(-*-): X^{\langle I \rangle} \times_X X^{\langle I \rangle} \to X^{\langle I \rangle}$ given by

$$([\sigma_m] * [\theta_n])(i) = [\texttt{if} \ i \leqslant m \texttt{ then } \sigma_m(i) \texttt{ else } \theta_n(i)]$$

Moreover, there is a contravariant involution $(-)^{rev}: X^{\langle I \rangle} \to X^{\langle I \rangle}$ which is constant on objects and given by

$$[\sigma_n]^{\rm rev}(i) = \sigma_n(n-i)$$

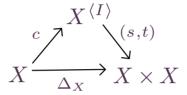
on maps.

Remark. $(-)^{\langle I \rangle} : \mathbb{T} \to \mathbb{T}$ is a functor acting on paths by postcomposition:

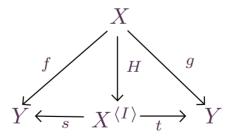
 $f^{\langle I\rangle}([\sigma]) \!=\! [f \circ \sigma]$

Moreover, all the associated maps are natural.

Remark. There is a factorisation of the diagonal map



Definition. Let $f, g: X \to Y$ be maps. A homotopy $H: f \rightsquigarrow g$ from f to g is given by the commuting diagram



H is constant on a subobject $X' \lhd X$ if H(x) = c(x) for all $x \in X'$.

Remark. So for any $x \in X$ we have a path $H(x): f(x) \rightsquigarrow g(x)$.

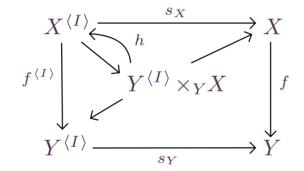
Homotopy equivalences

Definition. A homotopy equivalence is a map $u: X \to Y$ which has an up-to-homotopy inverse $v: Y \to X$.

Remark. The map v is a homotopy equivalence as well, called *the inverse homotopy equivalence*.

Fibrations

Definition. A section h of the map $(f^{\langle I \rangle}, s_X)$



is called Hurewicz connection. *A map which admits a Hurewicz connection is called* Hurewicz fibration.

Notation. We shall write \mathcal{H} for the class of Hurewicz fibrations.

Remark. A Hurewicz fibration $f: X \to Y$ is thus a map with a path lifiting property: for any path $\sigma: y \rightsquigarrow y'$ in Y and any $x \in X$ such that f(x) = y there is a path θ in X such that $f \circ \theta = \sigma$:

Definition. $X \in \mathbb{T}$ is fibrant if $!_X: X \to 1$ is a fibration.

Proposition.

1. Fibrations are stable under pullback and composition.

2. Any iso is a fibration.

3. Any object is fibrant.

4. $(s,t): X^{\langle I \rangle} \to X$ is a fibration for any $X \in \mathbb{T}$.

Strong deformation retracts

Definition. $X \in \mathbb{T}$ is a strong deformation retract of $Y \in \mathbb{T}$ if there is a map $e: X \to Y$ admitting a retraction $r: Y \to X$ such that there is a homotopy $H: id_Y \rightsquigarrow e \circ r$ constant on X (that is $H(x): x \rightsquigarrow (e \circ r)(x)$ is the constant path c(x) for all $x \in X$). The split mono e is called sdr-insertion.

Remark.

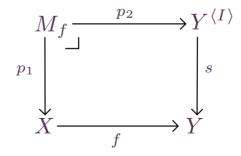
- 1. Any sdr-insertion is a homotopy equivalence.
- 2. Sdr-insertions are stable under pullback along a fibration.

Factorisations

Definition. A map $a \in {}^{\pitchfork}\mathcal{H}$ is called anodyne.

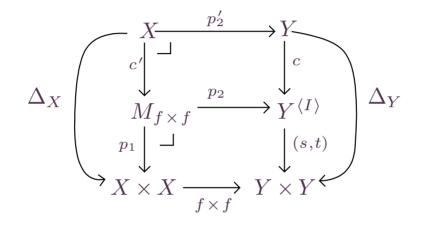
Proposition. Sdr-insertions are anodyne.

Definition. Let $f: X \to Y$ be a map. The object M_f given by the pullback



is called f's mapping track.

Remark. Pulling back the factorisation $\Delta_Y = (s, t) \circ c$ of the diagonal yields a factorisation of the diagonal $\Delta_X = p_1 \circ c'$ with $p_1 \in \mathcal{H}$ and $c' \in {}^{\pitchfork}\mathcal{H}$:



Theorem. Any map $f: X \to Y$ factors through the mapping track M_f as $f = h \circ a$ with a anodyne and h a Hurewicz fibration.

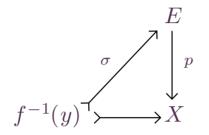
Products along maps

Remark. It is well-known that in any topos \mathbb{T} and any map $f: X \to Y$ in \mathbb{T} , the pullback functor $f^*: \mathbb{T}/Y \to \mathbb{T}/X$ has a left and a right adjoint $\sum_f \exists f^* \exists \prod_f$ called *pushforward along* f and *product along* f respectively. The product along f at u is the *object of local sections* of u, that is

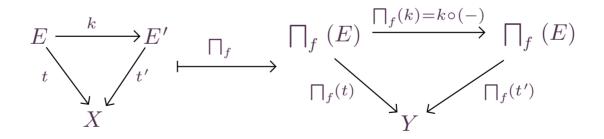
$$\prod_{f} (X \xrightarrow{u} Y) = \left\{ \sigma \in E^{f^{-1}(y)} \, | \, y \in Y, \, p \circ \sigma = i \right\}$$

in \mathbb{T} 's internal language.

Remark. A local section is thus given by the diagram



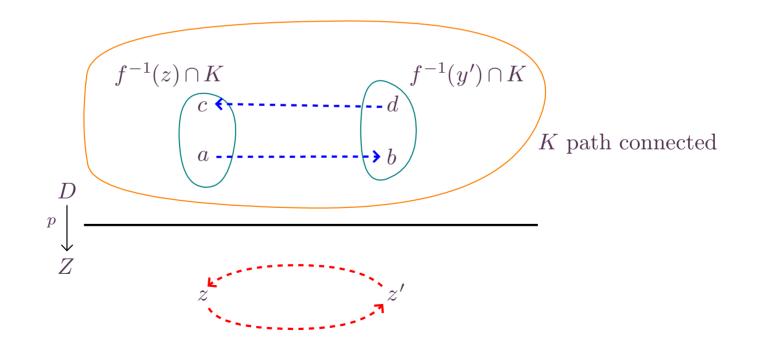
The action on maps is given by postcomposition



Lemma. Assume \mathbb{T} Hurewicz. Let $p: D \to Z$ be a fibration, $K \subseteq D$ a path connected component of D and $\delta: z \rightsquigarrow z'$ a path in X. The following are equivalent

i. $f^{-1}(z) \cap K \neq \varnothing$;

ii. $f^{-1}(z') \cap K \neq \emptyset$

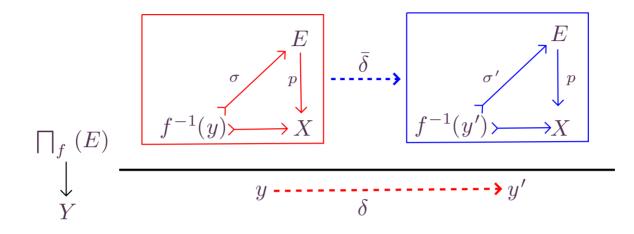


Theorem. Let $p, f \in \mathbb{T}_1$ be fibrations. Then $\prod_f (p)$ is again a fibration.

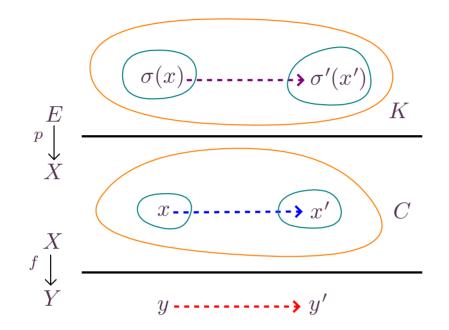
Definition. Assume $X \in \mathbb{T}$. X's local category is the subcategory $L_{\mathcal{F}}(X) \subseteq \mathbb{T} / X$ of the slice \mathbb{T} / X with all the objects being fibrations.

Corollary. \square_f restricts to local categories.

A path $\delta: y \rightsquigarrow y'$ in Y can be lifted to a path of sections:



since we have



The Hurewicz typos

Let \mathbb{C} be a category with finite limits. Recall that the product over A is given by pullback

$$(E, u) \times (E', u') = (E \times_A E', u \ast u')$$

with $u * u' = u \circ p_1 = u' \circ p_2$. The diagonal $\Delta_A E: (E, u) \to (E, u) \times (E, u)$ over A is thus given by

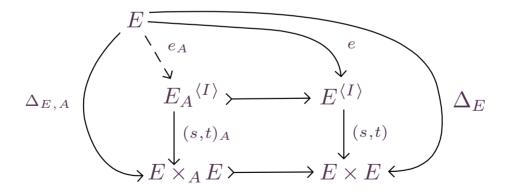
 $\Delta_{E,A} = (u * u) \circ (\mathrm{id}_E, \mathrm{id}_E)_A$

Definition. Let $(\mathbb{J}, \mathcal{F})$ be a tribe. A fibration in \mathbb{J}/A is in \mathcal{F} (as a map over A).

Proposition. (Joyal) Let $(\mathbb{J}, \mathcal{F})$ be a tribe. The factorisation of the diagonal

$$\Delta_E = (s, t) \circ e$$

with e anodyne and (s,t) a fibration induces a factorisation in $L_{\mathcal{F}}(A)$ by pullback in \mathbb{J}



The path object is $(E_A^{\langle I \rangle}, (u * u) \circ (s, t)_A)$. We have $s_A = p_1 \circ (u * u)$ and $t_A = p_2 \circ (u * u)$.

Lemma. Let \mathbb{T} be a Hurewicz topos and $f: A \rightarrow B$. The functorial square

$$\begin{array}{cccc}
 & L_{\mathcal{H}}(A) & \xrightarrow{\prod_{f}} & L_{\mathcal{H}}(B) \\
 & (-)_{A}^{\langle I \rangle} & & \downarrow & (-)_{B}^{\langle I \rangle} \\
 & \downarrow & & \downarrow \\
 & L_{\mathcal{H}}(A) & \xrightarrow{\prod_{f}} & L_{\mathcal{H}}(B)
\end{array}$$

commutes.

Remark. This is much stronger than just preservation of the homotopy relation.

Theorem. Any Hurewicz topos is a typos.

